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ABSTRACT 

Air pollution is currently regarded as top 

environmental threat for our health and top 

priority at the EU policy agenda (Zero 

Pollution EU Green Deal (1)). Moreover, 

more stringent EU regulations and newly 

emerging limit values can be expected 

following the WHO Guideline values. To face 

these challenges, cities will need to be 

prepared to provide their contribution in 

more fine-grained air quality assessments 

and pollution reductions. IoT and low-cost 

sensors, together with proper calibration 

and algorithmic approaches, can be used as a 

complementary tool for improved air quality 

assessments and evidence-based policy 

support. Engaging citizens in this 

transformation process is beneficial on 

multiple aspects: citizen science campaigns 

can extend the network (distributing 

deployment and maintenance effort), 

increase awareness and understanding on air 

quality dynamics and initiate behavioral 

change ultimately reducing air pollution. 

This report outlines the potential and 

limitations of air quality sensors including 

technical properties, differences with 

regulatory instruments, sensitivities and 

applications, data insights and analytics and 

the need for calibration and validation. While 

extending and complementing their 

environmental monitoring networks, cities 

should use sensor data as an additional tool 

to inform and properly engage all 

stakeholders in fighting air pollution 

together. 

1. INTRODUCTION 

Although air quality has improved substantially 

over the past decades, it is still regarded as the 

biggest environmental health risk in Europe, 

affecting people’s health and the ecosystems 

we rely on (2). It is an invisible threat affecting  

 

 

 

every single one of us. According to the 

European Environmental Agency (EEA), 77% of  

 

the European urban population is exposed to 

fine particulate matter (PM2.5) concentrations 

exceeding the World Health Organisation 

(WHO) guideline values, while 10% of the 

monitoring stations are reporting EU limit 

value exceedances for nitrogen dioxide (NO2) 

(2). Worldwide, more than 80% of people living 

in urban areas are still exposed to air quality 

levels exceeding WHO guideline values (3). 

Especially in urban environments where both 

pollution sources and people affected by 

pollution are concentrated, air pollution tends 

to peak. As pollution levels can vary 

dramatically over short distances or time 

instances (4–9), a high monitoring resolution in 

both space and time should be pursued to 

accurately estimate population exposure. Since 

traditional air quality monitoring stations are 

rather costly and cumbersome, cities typically 

only deploy few at representative locations (e.g. 

roadside, urban background, ...). To properly 

assess people’s exposure to air pollution, there 

is an urgent need for higher granularity.  

 

Thanks to advances in low-cost sensing and 

Internet of Things (IoT) technologies, various 

affordable and small-sized air quality sensors 

and a wide range of monitoring applications are 

available today, capable of detecting 

representative ambient concentration levels of 

the most important urban pollutants; i.e. PM, 

NO2 and ozone (O3) (10–18). Applications 

range from indoor to outdoor, fixed to mobile, 

community-based to personal. However, 

measurement principles of ~10-600 euro 

sensors are typically less conditioned, accurate 
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and selective compared to ~30 000 euro 

regulatory equipment, leading to lower data 

quality and sensitivity towards meteorological 

variables. Proper interpretation, validation and 

calibration is therefore crucial in order to 

make air quality sensors a smart solution. 

2. WHAT IS AIR QUALITY? 

Air pollution originates from both man-made 

and natural sources and can be released 

directly into the atmosphere (primary 

emissions) or can form as a result of chemical 

reactions with so-called precursor substances. 

While some pollutants are directly emitted and 

short-lived, other pollutants are formed at a 

later stage and/or can travel large distances 

(so-called transboundary pollution). When 

focusing on urban environments, most 

important outdoor air pollutants considered 

by the EEA and WHO are particulate matter 

(PM), with aerodynamical diameter smaller 

 than 10 µm (PM10) and 2.5 µm (PM2.5), 

nitrogen dioxide (NO2) and ozone (O3), as 

these compounds most significantly impact our 

health.  

Within those environments pollution sources 

include road traffic, residential heating (e.g. 

wood burning), industrial sources, airports, 

constructions works, natural sources (Saharan 

dust), resulting in exhaust (PM, NO2) vs non-

exhaust (e.g. wearing brake pads and road 

dust) and directly emitted (PM) vs secondary-

formed (e.g. O3) pollution in our atmosphere. 

The European Union has established health-

based standards and objectives at hourly, daily 

and yearly level 

(https://ec.europa.eu/environment/air/quality/s

tandards.htm), mainly driven by the economic 

feasibility. The WHO provides additional more 

stringent Air Quality Guideline values 

(https://www.who.int/phe/health_topics/outdo

orair/outdoorair_aqg/en/), purely based on 

health evidence from epidemiological studies 

(Table 1).  

 

 

Table 1: EU standards and WHO guideline values for PM2.5, PM10, NO2 and O3 according to 

Directive 2008/50/EC and WHO 2000 and WHO 2005. 

 Legislation Averaging period Concentration  

(µg m-3) 

Allowed 

exceedances 

PM2.5 

EU year 25   

WHO 
year 10   

day 25  max 3 days/year 

PM10 

EU 
day 50  max 35 days/year 

year 40   

WHO 
day 50  max 3 days/year 

year 20   

NO2 

EU 
hour 200  max 18 hours/year 

year 40   

WHO 
hour 200  - 

year 40   

O3 
EU Highest 8h-avg of day 120   

WHO Highest 8h-avg of day 100   

To make these air quality levels understandable 

and more informative for the general public, 

the air quality index (AQI) is defined to provide 

information on the current air quality situation 

(multiple pollutants) in one condensed index 

(Table 2). Different countries have their own 

air quality indices, corresponding to different 

national air quality standards. In Belgium 

(BELAQI), the concentration scales are defined 

based on relative risks (RR; health impact of 10 

µg m³ increase), documented in the Health 

Risks of Air Pollution in Europe (HRAPIE) 

report of the WHO. The actual index (1-10) is 

defined by the worst pollutant level (PM2.5, 

PM10, O3 and NO2). 

 

 

https://ec.europa.eu/environment/air/quality/standards.htm
https://ec.europa.eu/environment/air/quality/standards.htm
https://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/
https://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/
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Table 2: BELAQI index scale, classification and associated pollutant concentration scales of 24h-

averaged PM10, PM2.5 and daily max hourly O3 and NO2 concentration (irceline.be) 

Index Classification 

PM10 daily 
mean 
(µg/m³) 

PM2.5 daily 
mean 
(µg/m³) 

O3 max 1-hourly mean per 
day 
(µg/m³) 

NO2 max 1-hourly mean per 
day 
(µg/m³) 

1 Excellent 0 - 10 0 - 5 0 - 25 0 - 20 

2 Very good 11 - 20 6 - 10 26 - 50 21 - 50 

3 Good 21 - 30 11 - 15 51 - 70 51 - 70 

4 Fairly good 31 - 40 16 - 25 71 - 120 71 - 120 

5 Moderate 41 - 50 26 - 35 121 - 160 121 -150 

6 Poor 51 - 60 36 - 40 161 - 180 151 - 180 

7 Very poor 61 - 70 41 - 50 181 - 240 181 - 200 

8 Bad 71 - 80 51- 60 241 - 280 201 - 250 

9 Very bad 81 - 100 61 - 70 281 - 320 251 - 300 

10 Horrible >100 >70 >320 >300 

3. SENSING 

Currently, air quality is monitored via a 

network of automated regulatory monitoring 

stations (more than 150 in Flanders with an 

average cost of ~150 000 euro/station) 

regulated in terms of accuracy and data capture. 

These stations report pollutant concentrations 

at a near real-time (hourly) resolution. Hourly-

updated measurements can be consulted via 

https://www.vmm.be/data/actuele-

luchtkwaliteit or 

https://www.irceline.be/nl/luchtkwaliteit/metin

gen. This automated network is extended with 

a semi-automatic network including daily, 

weekly or monthly collector samples (e.g. 

passive NO2 samplers) that need lab analysis. 

To predict pollutant concentrations in 

between measurement locations, 

environmental agencies rely on air quality 

models that are able to predict pollutant 

concentrations based on the monitored 

concentrations at the regulatory stations, and 

known line/point emissions sources, their 

dispersion and transformation via 

meteorological and urban topology data. In 

Flanders, the ATMO-street is used to simulate 

pollution dispersion over multiple spatial 

scales; combining a regional interpolation 

model (RIO; 4x4 km²), a Gaussian dispersion 

model of line and point emission sources 

(IFDM), and a street canopy model (OSPM) to 

simulate the reduced ventilation effect in so-

called “street canyons”. As these models are 

rather computation intensive, the lower-

resolution RIO-IFDM model (100x100m) is 

currently applied at an hourly resolution to 

map pollutant concentrations in Flanders 

(https://www.vmm.be/data/actuele-

luchtkwaliteit). The high-resolution ATMO-

street model is not applied in real-time but 

used offline to simulate high-resolution yearly 

averaged maps 

(https://www.vmm.be/data/luchtkwaliteit-in-je-

eigen-omgeving). Within the VLAIO Dencity 

project, a near-real-time implementation of 

ATMO-street was developed for the Antwerp 

region (https://dencity.marvin.vito.be/). The 

automated monitoring network is strictly 

regulated in terms of instrumentation, accuracy 

and data capture at the EU and WHO level and 

forms the absolute ground-truth for air quality 

assessments.  

In addition to this existing toolset for air quality 

assessment, new sensor technologies, Internet 

of Things (IoT) applications and data analysis 

tools (e.g. Artificial Intelligence (AI)) are 

opening up new possibilities for environmental 

https://www.vmm.be/data/actuele-luchtkwaliteit
https://www.vmm.be/data/actuele-luchtkwaliteit
https://www.irceline.be/nl/luchtkwaliteit/metingen
https://www.irceline.be/nl/luchtkwaliteit/metingen
https://www.vmm.be/data/actuele-luchtkwaliteit
https://www.vmm.be/data/actuele-luchtkwaliteit
https://www.vmm.be/data/luchtkwaliteit-in-je-eigen-omgeving
https://www.vmm.be/data/luchtkwaliteit-in-je-eigen-omgeving
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdencity.marvin.vito.be%2F&data=04%7C01%7CJelle.Hofman%40imec.nl%7C24898f1c38b64168011e08d9358e3f82%7Ca72d5a7225ee40f09bd1067cb5b770d4%7C0%7C0%7C637599707334622949%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=WoAgszwwwKUZ7UIJzEfoWTOH2t79OVptlNMRvhwcFiI%3D&reserved=0
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monitoring and analysis (Figure 1). These 

technologies and data-driven tools have 

enormous potential by building upon existing 

monitoring infrastructure, increasing its 

monitoring granularity in space and time, and 

provide more integrated insights in 

interrelated environmental processes by 

training dependencies between multiple data 

streams (e.g. regulatory monitoring network, 

satellite, traffic, citizen science sensors, ...). 

IMEC explores this field by (1) 

benchmarking the performance of off-

the-shelf air quality sensors for PM and NO2, 

(2) developing distant calibration 

algorithms improving the data quality  

from air quality sensors, by relying on the 

available reference monitoring network, and 

(3) developing data-driven inference 

models, interpolating air quality readings from 

fixed and mobile sensors in both space and 

time.  

 

 

Figure 1: The future of environmental monitoring (EEA) 

 

As a user, when thinking about an air quality 

sensor application in your city, it is important 

to consider the fitness-for-purpose. As starting 

point, try to evaluate why you want to 

deploy air quality sensors? What are the 

actual questions you want to answer? 

Doing so, consider that the final sensor 

solution should depend on its intended 

purpose and required accuracy. If you want 

to raise awareness on air quality in general and 

personal exposure of citizens, air quality 

sensors can be distributed showing the effect 

of indoor cooking processes, wood burning, 

candles, indoor ventilation, healthy routing, 

behavioral habits, ... As people will evaluate 

their own sensor in response to their 

behaviour, they will very rapidly get acquainted 

with pollutant behaviour, rush hour peaks, 

indoor air quality, ... without the need of a 

highly accurate or precise sensor. If, on the 

other hand, you are interested in creating a 

more granular air quality monitoring network, 

multiple sensors will need to be installed in 

weather-proof (IP65) housings, with dedicated 

power (solar, battery, adapter) and 

connectivity (LoRa, NB-IoT, GPRS, ...) 
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solutions, showing high data capture, precision 

(low inter-sensor variability) and high accuracy. 

If you would be interested in mobile sensing, 

power and connectivity requirements will need 

to be optimized towards a high monitoring 

resolution (~1-10 seconds), while the sensor 

design needs to be small and versatile.  

In any case, the performance of your final 

sensor solution will depend on:  

(i) the actual sensor 

(ii) the applied hardware and 

casing design 

(iii) the chosen power and 

connectivity solution 

(iv) Data processing & calibration 

(§4) 

Herewith it is important to make the 

distinction between “sensor” (actual sensing 

unit), “sensor system” (sensor(s), hardware, 

casing, connectivity and power) and final 

“sensor solution” (dashboard, quality 

monitoring, calibration) as shown in Figure 2: 

 

Figure 2: Difference between sensor, sensor system and sensor solution 

Within the next paragraphs, we will go over 

the selection criteria for the sensor and sensor 

system one-by-one: 

3.1 THE ACTUAL SENSOR 

In order to select the sensor of interest, it is 

important to focus on the relevant 

pollutants. As mentioned earlier, pollutants 

considered most important in terms of 

outdoor health are currently particulate 

matter (PM2.5 and PM10), nitrogen dioxide 

(NO2) and ozone (O3). These are legislated, 

meaning that measured concentrations can be 

interpreted in terms of severity. From these, 

PM2.5 and especially NO2 are impacted by local 

sources (e.g. traffic, combustion, ...), therefore 

showing highest spatial variability. Traffic is 

contributing to ~40% of the total NO2 

emissions which is why NO2 is regarded as a 

typical traffic tracer. When focusing on indoor 

environments, penetration of outdoor 

pollution (PM, NO2, O3) might be relevant, 

however indoors there will be no traffic 

emissions and photochemical O3 formation. 

Indoor sources (cooking, dust resuspension, 

candles, incense, paint, chemicals,...) are known 

to impact ambient PM and Volatile Organic 

Compounds (VOCs) concentrations, while 

CO2 (due to respiration) is an important 

indicator for indoor ventilation (<900 ppm 

considered as well-ventilated) and has shown 

to exert cognitive effects. 

Once the monitored pollutants are decided, 

you can choose the actual sensors. Although 

no official sensor validation protocol yet exists, 

many 3rd party institutes have come up with 

their own sensor evaluation protocols and 

benchmarking studies which allow for 

comparison between different sensors; 

including Air Quality Index Project 

(http://aqicn.org/sensor/), RIVM 

(https://www.samenmetenaanluchtkwaliteit.nl/

), AQSPEC (http://www.aqmd.gov/aq-spec), 

http://aqicn.org/sensor/
https://www.samenmetenaanluchtkwaliteit.nl/
https://www.samenmetenaanluchtkwaliteit.nl/
http://www.aqmd.gov/aq-spec
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AIRLAB 

(http://www.airlab.solutions/en/news/results-

international-challenge-2019), US EPA 

Toolbox (https://www.epa.gov/air-sensor-

toolbox), VAQUUMS (https://vaquums.eu/), .... 

A wealth of literature studies evaluated various 

air quality sensors under controlled lab or real-

life outdoor conditions (10,12,15,19–29). 

Frequently reported performance metrics 

include R², MAE, RMSE, Uexp, … An online 

advisory platform with examples/tools for 

citizens on how the get started with their own 

air quality project was created in the Interreg 

Zulu project (https://hoemeetiklucht.eu/). 

Air quality sensors for particulate and gaseous 

pollutants typically consist of optical particle 

counters, based on laser scattering, and 

electrochemical gas sensors converting a 

chemical reaction (oxidation at sensing 

electrode and reduction reaction ay counter 

electrode) of the pollutant of interest in a 

quantifiable electrical current (Figure 3). Metal 

oxide gas sensors exist as well, relying on the 

gas reaction with semiconductor material, 

resulting in free electrons.  

 

Figure 3: Working principle of particle sensors (left) and electrochemical NO2 sensors (right) 

When comparing ~30 000 euro reference 

equipment to ~20-600 euro low-cost air 

quality sensors, there are some important 

differences to consider: 

- Sensitivity towards temperature/relative 

humidity: Particle and gas sensors 

typically exhibit sensitivity towards 

temperature and relative humidity. 

This pathway is however very different 

for particle sensors compared to 

electrochemical sensors. For particle 

sensors, relative humidity physically 

impacts ambient particle sizes, by 

growing particles via condensation. 

This physical effect is similar for all 

particle sensors and controlled by 

conditioning (drying) the sampled air in 

reference instruments while this is not 

the case for low-cost sensors. Relative 

humidity impacts electrochemical 

sensors very differently by changing 

the humidity equilibrium between the 

sensor electrolyte and outside air, 

causing the sensor to dry out, resulting 

in a changing sensor response. Cross-

sensitivity towards other pollutants, 

e.g. O3 for NO2 sensors also exists as 

both pollutants have oxidative 

potential, triggering the 

electrochemical sensor. 

- Detection range/limits: Low-cost particle 

sensor have no particle size cut-offs 

(impactor, cyclones) and lower 

detection range when compared to 

reference analyzers. While low-cost 

sensors are detecting particles from 

0.3 µm onwards, reference equipment 

is able to detect particles as small as 

0.18 µm. This might seem like a small 

difference but is rather significant 

when looking at particle number size 

distributions (Figure 4). 

 

 

 

 

 

http://www.airlab.solutions/en/news/results-international-challenge-2019
http://www.airlab.solutions/en/news/results-international-challenge-2019
https://www.epa.gov/air-sensor-toolbox
https://www.epa.gov/air-sensor-toolbox
https://vaquums.eu/
https://hoemeetiklucht.eu/).


 

 
 

 

 
Figure 4: Lower detection limit of low-cost sensors (purple), compared to equivalent 

instrumentation (blue), visualized on a typical particle number size distribution (particle 

counts (# cm-³) vs particle diameter (Dp)) 

 

Gas sensors are often sensitive in the 

parts per million (ppm) range, while 

ambient NO2 and O3 concentrations 

are typically in the 0-100 parts per 

billion (ppb) range. This is important as 

there currently are only limited NO2 

sensors available that are capable of 

quantifying ambient NO2 

concentrations. 

- Low-cost sensors tend to drift over 

time because particle sensor get 

clogged with dust while the electrolyte 

inside electrochemical sensors tends 

to dry out. Both processes will cause 

changing sensor responses over time. 

Therefore, sensor suppliers typically 

provide lifetimes of ~1 year in the 

sensor specifications before sensors 

need replacing. 

Besides literature studies based on existing 

comparative platforms, projects and studies, 

IMEC benchmarked several particle and gas 

sensors in the field next to reference 

(equivalent) equipment (Palas FIDAS 200S) or 

regulatory stations in Belgium (VMM) and the 

Netherlands (RIVM). Particle sensors included 

Sensirion SPS30, Alphansense OPC-N2 and 

OPC-N3, NovaFitness SDS011 and gas sensors 

include the Alphasense NO2A43F and showed 

a wide range in performance and sensitivities. 

VITO has a dedicated sensor validation center 

(https://aqsensors.vito.be/en/sensor-validation-

center) and is setting up a sensor test protocol 

for Flanders, based on the European CEN 

WG42 protocol. 

In order to choose a specific sensor that best 

fits your needs, a first selection can be made 

from the sensor spec sheet, containing 

information on size, power requirement, 

detection range, measurement resolution, .... 

Next, sensor selection can be based on 

reported performance from 

independent benchmarking studies, 

online platforms or own experiments. 

Keep in mind that the listed specifications can 

be very different from the performance 

reported in the field. 

 

3.2 Which hardware to use? 

In order to have a functional sensor solution, 

you need the actual sensors, printed circuit 

boards (PCB’s), microprocessor and a solution 

to log or transmit the sensor data. This 

hardware has to be combined in a sensor 

housing to shield the hardware from unwanted 

influences of the indoor/outdoor environment. 

The chosen size and format of the final sensor 

solution will depend on its intended application. 

For portable applications, a sensor shouldn’t 

necessarily be weatherproof but preferably 

small and versatile, while not being too power-

https://aqsensors.vito.be/en/sensor-validation-center
https://aqsensors.vito.be/en/sensor-validation-center
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hungry (as it will probably operate on 

batteries). Applications requiring continuous 

outdoor monitoring will need robust and 

weatherproof (IP65) housing. Sensors need 

proper exposure to outside air, either via 

openings in the housing or tubing to draw air 

in from outside. Because of the sensitivity 

towards temperature and relative humidity, 

sensors cannot be too close to the hardware 

(which is warming up as well) or proper 

ventilation of the sensor box should be 

foreseen. Make sure to include temperature 

and relative humidity sensors in the 

environment where the sensors are exposed 

(internal when sensors are inside a vented box 

or external when sensors are exposed outside 

of the sensor box). 

As particle sensors rely on a sampling flow 

created by a small fan, ideally laminar free-flow 

conditions should be created. When tubing is 

applied, antistatic tubing is preferred while 

tubing length should be limited as much as 

possible to avoid particle scavenging. 

Turbulence in the sampling flow should be 

avoided, e.g. by putting the sensor in a 

dedicated housing. IMEC for example applies 

Kunak mobile air quality sensors on top of 

delivery vans (bpost) in Antwerp, relying on a 

dedicated housing to create laminar flow 

conditions over the membranes of 

electrochemical sensor membranes (Figure 5). 

   

Figure 5: IMEC OCTA platform including Alphasense PM, NO2 and O3 sensor and LoRa antenna 

(left), mobile Kunak sensor hardware and dedicated housing for optimized flow conditions 

(middle) and picture of a deployed Kunak sensor on the roof of a Bpost van (right) 

3.3 POWER AND CONNECTIVITY 

 

Several power and connectivity solutions are 

available determining the capabilities of the 

intended sensor solution (Table 1). Although 

air quality sensors have become less power 

consuming (<300mA at 5V), inclusion of a 

particle sensor typically limits the battery life as 

the laser and fan remain power-hungry features. 

Gas sensors require constant powering as 

electrochemical cells need a warmup period of 

~4 hours in order to produce reliable readings. 

Current available off-the-shelf platforms 

consist of battery- and solar panel powered or 

grid powered devices.  

 

If a local internet connection (e.g. wifi, 

ethernet) is no option, LoRa or SigFox are 

relatively cheap and reliable connectivity 

solutions as long as no high monitoring 

resolution is needed. GPRS (3G, 4G,...) and  

NBIoT can be used to send larger data 

packages or at a higher monitoring resolution 

(higher bandwidth). An overview of the 

existing IoT connectivity solutions and most 

important features can be found via 

http://iotfactory.eu/nl/iot-

kenniscentrum/overzicht-van-iot-netwerken/. 

In practice, current available off-the-shelf 

platforms in most cases provide multiple 

connectivity solutions. 

 

 

http://iotfactory.eu/nl/iot-kenniscentrum/overzicht-van-iot-netwerken/
http://iotfactory.eu/nl/iot-kenniscentrum/overzicht-van-iot-netwerken/
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Table 3: Required specifications for dedicated sensor solutions 

 Portable outdoor 

Mobile 

continuous 

outdoor 

Portable indoor 

Fixed 

continuous 

outdoor 

Low-power sensors X X (if battery) X  

Weatherproof 

housing 
 X  X 

Sampling resolution High (~10 sec) High (~10 sec) High (~10 sec) Low (5-15 min) 

Power Battery 
Battery – 5V car 

connector 
Battery GPRS, wifi, 

Connectivity 
Bluetooth, GPRS, 

NBIoT 

Bluetooth, GPRS, 

NBIoT 

Bluetooth, GPRS, 

wifi 

LoRa, GPRS, 

NBIoT 

...     

Optimizing your air quality monitoring needs 

towards the selection criteria listed above 

should enable you to come up with an 

optimized sensor solution for the intended 

monitoring purpose. Off-the-shelf sensor 

platforms with integrated 

hardware/power/connectivity are available as 

well with a wide range in pricing (~100-17280 

euro/3 years), depending on the considered 

pollutants, application, housing, included 

maintenance contract, .... An overview of 

commercially available platforms is provided in 

Annex 1. 

4. DATA PROCESSING 

When using IoT sensors for air quality 

monitoring purposes, some data processing 

steps are crucial to guarantee reliable air 

quality data. Today, many cities/projects are 

applying air quality sensors without knowledge 

on sensor sensitivities and data accuracy (see 

Sensing). When only considering raw sensor 

data, interpretation can lead to faulty 

conclusions, growing criticism and societal 

fatigue. This is why deployments of air quality 

sensors in cities should be accompanied with 

(1) proper expectation management on 

the possibilities and limitations of low-cost air 

quality sensors to all involved stakeholders and 

(2) a calibration and validation protocol 

to guarantee the data quality of such sensors 

over time. In practice, this can be achieved by 

locating ~3 sensor boxes next to one/multiple 

regulatory monitoring station(s) to compare 

the sensor and calibration performance over 

time. 

4.1 CALIBRATION & VALIDATION 

 

To cope with sensor sensitivities to 

meteorological conditions and sensor drift 

over time as explained in 3.1, correction and 

calibration models are needed to guarantee 

reliable data. Three different calibration 

approaches exist, namely lab-, field- and cloud 

calibration. During a lab calibration, a sensor 

response is tested under controlled conditions 

of e.g. target/interfering gas, temperature and 

relative humidity, but this does not mimic real-

world conditions. During field calibration, 

the sensor response is tested/calibrated under 

changing real-world conditions. This approach 

has shown a better performance for outdoor 

applications, when compared to the lab 

calibration but is only valid under the evaluated 

calibration conditions and does not consider 

drift over time. Cloud calibration relies on 

data fusion of sensor data with external data 

sources (e.g. regulatory air quality data, 

environmental data, ...). This allows for 

network-wide corrections/calibrations and 

continuous calibration to cope with sensor 

drift over time. Different calibration 

approaches and associated performances have 

been reported in literature for PM (25,30–32) 

and NO2 (14,33–37). RIVM is experimenting 

with online calibrations in their citizen science 

platform “Samen Meten” 

(https://www.samenmetenaanluchtkwaliteit.nl/

). Within the VLAIO Dencity project 

(https://www.imeccityofthings.be/nl/projecten/

dencity), we started experimenting with 

existing calibration features reported in 

literature and new data-driven approaches to 

https://www.samenmetenaanluchtkwaliteit.nl/
https://www.samenmetenaanluchtkwaliteit.nl/
https://www.imeccityofthings.be/nl/projecten/dencity
https://www.imeccityofthings.be/nl/projecten/dencity
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improve the data quality from existing sensors. 

This by comparing the sensor performance in 

terms of accuracy, linearity and correlation 

before and after calibration (Table 2). 

Moreover, data quality in terms of data capture, 

precision and accuracy are compared to 

provisional data quality objectives proposed by 

VMM (Annex 2), as a future EU certification 

scheme for sensors (Class 1 –3 sensors) is 

being developed by CEN TC 264 WG42. 

Traditional sensor calibration, by co-locating 

sensors temporary next to reference 

equipment under controlled (lab calibration) or 

outdoor (field calibration) conditions, corrects 

for the sensor sensitivities but is logistically 

cumbersome. Especially, since recurrent 

calibrations are needed to cope with sensor 

drift over time. IMEC developed a cloud 

calibration approach, calibrating sensors (at 

any location) in real-time based on reference 

measurements from available regulatory 

monitoring networks. Our algorithm provides 

daily calibration factors, considering a 35-

day sliding training window, automatic 

selection of best suitable reference station 

depending on the considered pollutant 

variability and sensor calibration based on time 

periods with representative (nighttime) 

concentrations (Figure 5).

 

 

Figure 5: Experienced diurnal PM and NO2 variability at different reference monitoring locations 

(VMM) in Antwerp. The shown hourly data is averaged over > year (April, 2018 - July, 2019) 

 

Table 2: Data quality improvements of the cloud calibration algorithm, developed by IMEC-NL. 

Averaged results of 8 PM sensors at 8 different reference stations in 2 different cities (Antwerp, 

Ghent). Improvements are calculated for both PM2.5 and PM10, for hourly- and daily-averaged 

sensor data. Colors indicate data quality objectives for the expanded uncertainty proposed by 

the VMM, with red (“inadequate”; 100-150%), yellow (“sensitizing”; 50-100%) and green 

(“supplementary”; <50%). For more information on the applied performance metrics, see 

Annex 2. 
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Distant calibration algorithms have been 

developed for PM2.5, PM10 and NO2 and tested 

on different sensor types (NovaFitness SDS011, 

Sensirion SPS30, Alphasense OPC-N2/3, 

Alphasense A43F) in different deployments in 

Antwerp, Ghent, Dordrecht and Eindhoven 

(Figure 6). The resulting sensor performances 

before and after calibration can be found in 

Annex 2, while a scientific journal paper has 

been submitted (38). 

Thanks to its cloud implementation, this 

calibration approach can be provided “as 

a service” on top of existing sensor 

networks in any city, for any sensor. The 

performance of the calibration will depend on 

the considered pollutant (PM2.5, PM10, NO2, 

BC), the applied sensor system and granularity 

of the available reference network. 

 

Figure 6: Sensor deployments to validate IMEC-NL’s sensor solutions in Antwerp, Dordrecht 

and Eindhoven 

To show the potential of scalable calibration 

algorithms, IMEC implemented its calibration 

algorithm for PM (v4.0) in the cloud, improving 

sensor data from all Belgian NovaFitness 

SDS011 sensors, openly available via 

(https://sensor.community/nl/)(Figure 7). From 

the time series graphs in Figure 7, it can be 

observed that the distant calibration corrects 

for the general sensor underestimation, while 

retaining the measured sensor variability. 

 

https://sensor.community/nl/
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Figure 7: Visualization dashboard showing IMEC-NL’s real-time calibrated sensor data from 

openly available PM sensors (https://sensor.community/nl/)

 

4.2 VISUALISATION 

 

When visualizing air quality data, it is important 

to consider (1) the type of collected sensor 

data (fixed sensor network vs personal 

exposure with portable sensor) and (2) the  

 

general spatiotemporal variability of air quality 

data. Sensor network visualizations can 

include spatial variation by mapping sensor 

locations with associated color scales showing 

(near) real-time concentration levels, while the 

temporal variation can be visualized by plotting 

sensor data from the last hours/days, when 

selecting a certain sensor (Figure 8). 

  

Figure 8: Left: map visualization of a fixed sensor network in Wielwijk, Dordrecht (NL) with 

temporal variation of the past hours (left), and right: daily exposure quantified by wearable 

sensor in Antwerp on a map and temporal graph 

In order to generalize the measured air quality 

levels, the color scale can be based on the Air 

Quality Index, while available nearby regulatory 

monitoring stations can be shown as well for 

comparison as this data is typically openly 

available (e.g. in Belgium: 

https://github.com/irceline/open_data). 

Additional analytics can include time variation 

https://sensor.community/nl/
https://github.com/irceline/open_data


 

 13 
 

 

graphs (see §5), number of exceedance days 

(based on limit values), local contribution 

(subtracting background concentrations), 

spatial statistics,... To obtain air quality 

estimates between measured locations or time 

instances, spatiotemporal interpolation, 

physicochemical or data-driven models can be 

applied. 

When dealing with trajectory 

measurements with portable sensors, the 

user is not interested in city-wide maps, but 

rather in the experienced pollutant levels along 

their trajectories (Figure 8). These pollutant 

levels will be impacted by a general background 

concentration and local sources encountered 

along the trajectory. In this case, a visualization 

of the experienced pollutant levels along the 

trajectory, possibly normalized for the 

background concentration, is more meaningful. 

Additional analytics might include hotspot 

locations along the trajectory, number of 

experienced peaks, inhaled dose (based on the 

assumed/quantified ventilation rate), ....  

In any case, it is important to consider that to 

date, sensor readings are not regarded 

accurate enough by the government/EU/WHO 

to be legally binding in terms of limit/target 

values. Therefore, adding a disclaimer or 

additional information section on the 

advantages/limitations of this sensor data and 

expected accuracy of the collected sensor data 

is worthwhile when exposing sensor data to 

the wide public. 

5 FROM DATA TO INSIGHTS 

When properly accounting for the current 

limitations of low-cost air quality sensors in 

terms of data processing and maintenance (see 

§4), collected air quality data from IoT sensors 

complements regulatory data in creating more 

granular monitoring networks, detecting new 

hotspot locations, measuring the impact from 

policy interventions, improving current air 

quality models (e.g. traffic emission factors), 

developing new air quality features (i.e. healthy 

routing applications), .... Moreover, besides the 

obvious air quality-related advantages, 

application of air quality sensors has shown to 

result in more participation between citizens 

and policy makers, co-creation initiatives 

creating a wider support base for policies (e.g. 

https://www.samenmetenaanluchtkwaliteit.nl/), 

awareness raising and creates opportunities for 

more evidence-based policy making. 

In the following paragraphs, we will touch upon 

potential insights and actions that can be built 

upon collected IoT sensor data. 

5.1 INSIGHTS 

5.1.1 Sensor readings 

Mapping data from sensor networks and 

measured trajectories (§4.2) provides insights 

in drivers of air pollution (e.g. pollution 

gradients along busy roads, peak exposure 

during daily commutes or at wood stoves) and 

a better understanding on the impact from 

local microenvironments on the resulting air 

quality (e.g. urban green areas, street canyons, 

traffic intersections, ...). To understand the 

typical temporal variability of a measured 

pollutant, so-called time variation graphs (R 

openair package; 

https://davidcarslaw.github.io/openair/) can be 

generated showing the pollutant variability 

during the day, week, and year (Figure 9). From 

such graphs, the typical pollutant behaviour (e.g. 

rush hour peaks, wood burning events, 

seasonal trends, annual events, ...) can be 

derived at that location and compared to 

available background, roadside and/or hotspot 

regulatory monitoring locations for source 

attribution purposes. By comparing sensor 

data with wind field data, source directionality 

can be retrieved (Figure 10). Moreover, based 

on historical time series, air quality predictions 

can be made for upcoming hours (which might 

be of relevance for sensitive groups).  

https://www.samenmetenaanluchtkwaliteit.nl/
https://davidcarslaw.github.io/openair/


 

 
 

 

Figure 9: Time variation graphs (R openair package) of NO2 data collected from a 

supplementary sensor network in Dordrecht (S1-S15) and 3 nearest reference monitoring 

locations (NL10437, NL01489, NL10442) 

 

Figure 10: polar plot (R openair package) showing influence of nearby sources on exhibited 

pollutant concentrations 

By fusing data from multiple domains (traffic, 

meteorology, air quality, …), underlying 

dependencies can be disentangled to better 

understand air quality dynamics and improve 

air quality by steering underlying processes. 

For example, when deploying sensors on traffic 

intersections, monitoring air quality, traffic 

flow/congestion and traffic lights, the operation 

of the traffic lights can be optimized towards 

better traffic flow and improved local air quality. 

5.1.2 Sensor Inference 

In addition to insights from air quality readings 

at measured locations, a variety of tools exists 

to interpolate air quality readings between 

monitoring locations, including traditional 
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spatial interpolation techniques, 

physicochemical models, Computational Fluid 

Dynamics (CFD) or data-driven machine 

learning techniques. An overview of existing air 

quality models is provided in Annex 3. 

Traditional interpolation techniques (e.g. 

Kriging) fall short as they consider every 

measurement to be representative for the 

same geographical area, while this is not always 

the case in real-life. Rural background stations 

are typically representative for a wider area 

than for example urban roadside stations. On 

the other hand, physical models simulating 

pollutant dispersion at multiple spatial 

resolutions, from regional background to local 

emissions, are typically computation intensive 

which makes them unsuitable for (near) real-

time simulations. This is why IMEC is focusing 

on data-driven techniques which do not 

require a lot of inventory data (emission 

factors, emission sources, traffic intensity, ...), 

since they rely on openly available data 

(satellite data, POI, route type, 

meteorology, ...) and are less computation 

demanding. When considering Antwerp, 

where a fixed and mobile (bpost vans) air 

quality sensor testbed is complementing the 

existing regulatory monitoring network (VMM), 

a sparse matrix of data points is collected in 

space and time (Figure 11). Due to the 

observed associations in both space and time 

(Figure 5), data matrices of air quality data can 

be considered low rank and thus explainable by 

statistical/numerical techniques (39,40). The 

underlying low rank and slowly time-varying 

structure of the air quality data can be 

leveraged to create numerical models that 

facilitate an effective spatiotemporal 

extrapolation (41). Machine learning (ML) 

approaches allow for training of these 

underlying dependencies based on large air 

quality datasets and supplied context 

information (traffic, meteorology, street type, 

speed limit), hereby enabling data inference or 

matrix completion in both space and time 

(Figure 11). 

 

 

 

Figure 11: Matrix of collected fixed and mobile NO2 measurements in Antwerp (22/5/2018) and 

completed matrix based on the AVGAE inference model. The X and Y axis denote latitude and 

longitude (location), while the Z axis denotes time

Together with research groups of UGhent (IPI) 

and the VUB (ETRO), IMEC-NL explored this 

potential by developing two machine learning 

models, trained and tested on mobile air 

quality datasets from Antwerp, BE (bpost vans; 

https://www.imeccityofthings.be/nl/projecten/b

el-air),  Utrecht, NL (snuffelfiets; 

https://snuffelfiets.nl/) and in Oakland, US 

(Google car; 

https://blog.google/products/maps/lets-clear-

air-mapping-our-environment-our-health/).  

The AVGAE model is a deep learning model 

based on variational graph autoencoders 

(VGAE), incorporating geographical 

dependencies by considering the road network 

(graph), while training time-variant 

dependencies based on additional context 

information (42,43). The Geographical 

https://www.imeccityofthings.be/nl/projecten/bel-air
https://www.imeccityofthings.be/nl/projecten/bel-air
https://snuffelfiets.nl/
https://blog.google/products/maps/lets-clear-air-mapping-our-environment-our-health/
https://blog.google/products/maps/lets-clear-air-mapping-our-environment-our-health/
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Random Forest (GRF) model allows for 

spatial non-stationarity in the relationship 

between a dependent and a set of independent 

variables, by considering both a global and local 

model. This technique adopts the idea of 

Geographically Weighted Regression (GWR), 

moving a spatially weighted window over the 

observations. While a global model is trained 

on random sensor and context data subsets, a 

local model was trained on subsets from 

nearest neighbors (geographical + feature 

neighbours). Both models rely on large air 

quality datasets and openly available sources of 

context information (POI, road type, 

meteorology, traffic, street canyon index, ...). 

When conducting a temporal validation 

exercise following the JRC FAIRMODE 

protocol (44), predicting pollutant 

concentrations at reference locations without 

using this reference data during model training, 

both models perform well in terms of accuracy 

and correlation (Table 3). Comparing our 

observations to reported performance metrics 

(r= 0.73-0.9, RMSE 8.29-18.93 and MBE: -5.61-

0.94 (NO2)) of the current physical model 

applied for policy making in Flanders, Belgium 

(ATMOStreet (45,46)), the considered data-

driven techniques seem to approach the state-

of-the-art in terms of performance; with 

slightly lower correlations (r = 0.63 - 0.77) and 

slightly higher accuracies (RMSE = 3.49 - 3.99 

and MBE = -1.05 - 1.99) between the predicted 

concentrations and the reference station 

readings (47). 

 

 

Table 3: Temporal validation performance of hourly AVGAE and GRF predicted PM2.5 

concentrations for June 2020, at two reference locations in Utrecht (NL10636, NL10643) 

Model Station MAE MBE RMSE IA Acc Corr NMB 
NMS

D 
MQI 

AVGAE NL10636 3.14 1.79 3.99 0.82 0.64 0.72 -0.21 -0.07 0.20 

AVGAE NL10643 2.83 0.15 3.73 0.75 0.58 0.63 -0.02 -0.35 0.19 

GRF NL10636 2.88 1.99 3.8 0.79 0.67 0.77 -0.23 -0.34 0.43 

GRF NL10643 2.74 -1.05 3.49 0.79 0.6 0.73 0.15 -0.37 0.44 

AVGAE Avg 2.99 0.97 3.86 0.79 0.61 0.68 -0.12 -0.21 0.20 

GRF Avg 2.81 0.47 3.65 0.79 0.64 0.75 -0.04 -0.36 0.44 

Time series graphs of the AVGAE and GRF 

predicted PM2.5 concentrations are provided in 

Figure 12 and illustrate that predicted PM2.5 

concentrations (Mi) agree reasonably well with 

the reported reference data (Oi) for each of 

the considered models at each location, mostly 

falling within the uncertainty bounds of the 

reference equipment (RMSU; provided by 

FAIRMODE) and the MQI limits defined by 

FAIRMODE as twice (k=2) the reference 

measurement uncertainty (44). Similar model 

validation exercises have been conducted on  

different mobile datasets,  Snuffelfiets (Utrecht, 

NL), postal vans (Antwerp, BE) and Google car 

(Oakland, US) (48).
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Figure 12: Time series graph of AVGAE predicted (Mi) and RIVM reported (Oi) PM2.5 

concentrations at Kardinaal De Jongweg (NL10636) with associated uncertainty bounds of the 

reference equipment (RMSU; purple) and model quality limits (2 x RMSU; dashed lines) defined 

by FAIRMODE

IMEC applied the AVGAE and GRF model to 

predict street-level concentrations for the city 

of Antwerp based on the collected data from 

mobile sensors (bpost vans; Figure 13), fixed 

sensors and the available regulatory monitoring 

network (VMM). This data-driven approach 

integrates all available air quality data of a city to 

map pollutant variability both in space and time.  

 

 

 

Figure 13: Mapping Air Quality (MAQY) dashboard visualizing mobile air quality measurements 

(PM1, PM2.5, PM10 and NO2) collected during one day (29/4/2019) by postal vans in Antwerp (BE) 

5. LEARNINGS & ACTIONS 

 

Air pollution is currently regarded as top 

environmental threat for our health and top 

priority at the EU policy agenda (Zero 

Pollution EU Green Deal (1)). Moreover, more 

stringent EU regulations and newly emerging 

limit values can be expected following the  

 

WHO Guideline values. To face these 

challenges, cities will need to be prepared to 

provide their contribution in more fine-grained 

air quality assessments and pollution 

reductions. IoT and low-cost sensors, together 

with proper calibration and algorithmic 

approaches, can be used as a complementary 

tool for improved air quality assessments and 

evidence-based policy support. Engaging  
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citizens in this transformation process is 

beneficial on multiple aspects: citizen science 

campaigns can extend the network 

(distributing deployment and maintenance 

effort), increase awareness and 

understanding on air quality dynamics and 

initiate behavioral change ultimately 

reducing air pollution. 

Based on the outlined advantages and 

limitations of air quality sensors, following 

take-aways are crucial to reach a fit-for-

purpose sensor solution: 

- A sensor solution includes sensor, 

connectivity and power! 

- Optimize your sensor solution based 

on the intended use case: fit for 

purpose 

- Sensors are sensitive and need 

calibration 

- Make sure to consult available 3rd 

party sensor performance studies 

when selecting your sensor/solution 

- No uniform certification framework 

(yet!) 

- Make sure to include a validation 

step in your use case to have an idea 

about the associated data quality 

 

 

When implementing a proper calibration 

approach and maintenance program, air 

quality sensors complement the existing 

monitoring networks towards more fine-

grained air quality monitoring. This to create 

an improved air quality map of your city, 

increase the understanding of the air quality 

variability in your city, detect new hotspot 

locations with air quality exceedances or clean 

air environments to reside in, organize 

recreational events, sports/leisure activities, ...  

Based on a more granular air quality map, 

priority areas can be defined for dedicated 

policy measures or urban transformation, 

while healthy routing applications can be 

developed for active commuters, and traffic 

can be redirected from high-polluted areas. 

More fine-grained air quality maps will 

contribute to better exposure assessments 

when merged with other data sources, e.g. 

with mobility flow data (e.g. 

https://www.imeccityofthings.be/nl/projecten/c

ityflows) to see where people are impacted 

most by bad air quality and which city 

neighborhoods need transformation priority. 

Moreover, policy measures (low emission zone, 

one way street, bicycle streets, redirected 

traffic, ...) can be optimized with sensor 

data (e.g. traffic light optimization) while 

building more evidence to create a larger 

citizen support base (evidence-based policy 

making). 

Finally, IoT sensors are key in awareness 

raising, as they have enabled 

personalization of environmental data. 

Via co-creation initiatives, citizens are 

informed about main drivers of air quality and 

will change their behaviour more easily 

when seeing the impact on their personal 

devices. This can impact car use, wood burning, 

commuting routes, indoor ventilation, .... 

Several community-based initiatives to 

measure PM with sensors have emerged in 

various Belgian cities, e.g. Brussels 

(https://influencair.be/), Leuven 

(https://www.vmm.be/evenementen/presentati

es/studiedag-lucht-samen-meten-en-

weten/maarten_reyniers_leuvenairvmmma.pdf

), Roeselare 

(https://www.klimaatswitch.be/airsl), 

https://www.luchtpijp.be/ ,... In the 

Netherlands, farmers and citizens are currently 

adopting sensors from RIVM to evaluate their 

efforts e.g. in reducing stable emissions 

(https://www.rivm.nl/boeren-en-buren) or 

personal exposure while cycling 

(https://snuffelfiets.nl/). Similar campaigns can 

be launched to raise awareness about personal 

air quality exposure during commuting, wood 

burning, cooking, ...  

While extending and complementing their 

environmental monitoring networks, cities 

should use sensor data as an additional tool to 

inform and properly engage all stakeholders in 

fighting air pollution together! 

https://www.imeccityofthings.be/nl/projecten/cityflows
https://www.imeccityofthings.be/nl/projecten/cityflows
https://influencair.be/),
https://www.vmm.be/evenementen/presentaties/studiedag-lucht-samen-meten-en-weten/maarten_reyniers_leuvenairvmmma.pdf
https://www.vmm.be/evenementen/presentaties/studiedag-lucht-samen-meten-en-weten/maarten_reyniers_leuvenairvmmma.pdf
https://www.vmm.be/evenementen/presentaties/studiedag-lucht-samen-meten-en-weten/maarten_reyniers_leuvenairvmmma.pdf
https://www.vmm.be/evenementen/presentaties/studiedag-lucht-samen-meten-en-weten/maarten_reyniers_leuvenairvmmma.pdf
https://www.klimaatswitch.be/airsl
https://www.luchtpijp.be/
https://www.rivm.nl/boeren-en-buren
https://snuffelfiets.nl/
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